
Group treatments using results of paired t-test
lsd_group.RdIntended as a replacement of the agricolae::orderPvalue() function, but
with (maybe) a better algorithm.
Examples
library(asreml)
model <- asreml(
fixed = yield ~ Variety + Nitrogen + Variety:Nitrogen,
random = ~idv(Blocks) + idv(Blocks):idv(Wplots),
residual = ~idv(units),
data = oats
)
pred <- asremlPlus::predictPlus.asreml(
model,
classify = "Variety",
wald.tab = as.data.frame(asreml::wald(model, denDF = "algebraic")$Wald)
)
#>
#>
#> #### Predictions for yield from Variety
#>
#>
#> Notes:
#> - The predictions are obtained by averaging across the hypertable
#> calculated from model terms constructed solely from factors in
#> the averaging and classify sets.
#> - Use 'average' to move ignored factors into the averaging set.
#> - The simple averaging set: Nitrogen
#> - The ignored set: Blocks,Wplots
#>
#> Variety predicted.value standard.error upper.Confidence.limit
#> 1 Golden_rain 104.5000 7.797539 121.8740
#> 2 Marvellous 109.7917 7.797539 127.1657
#> 3 Victory 97.6250 7.797539 114.9990
#> lower.Confidence.limit est.status
#> 1 87.12600 Estimable
#> 2 92.41767 Estimable
#> 3 80.25100 Estimable
#>
#>
#> LSD values
#>
#> minimum LSD = 15.77278
#>
#> mean LSD = 15.77278
#>
#> maximum LSD = 15.77278
#>
#> (sed range / mean sed = 1.26e-14 )
#>
#>
#>
#> Variance matrix of the predicted values
#>
#> NULL
#>
#>
#> All pairwise differences between predicted values
#>
#> Golden_rain Marvellous Victory
#> Golden_rain 0.000 -5.292 6.875
#> Marvellous 5.292 0.000 12.167
#> Victory -6.875 -12.167 0.000
#>
#>
#> p values for all pairwise differences between predicted values
#>
#> Golden_rain Marvellous Victory
#> Golden_rain 0.472 0.354
#> Marvellous 0.472 0.116
#> Victory 0.354 0.116
#>
#>
#> Standard errors of differences between predicted values
#>
#> Golden_rain Marvellous Victory
#> Golden_rain 7.079 7.079
#> Marvellous 7.079 7.079
#> Victory 7.079 7.079
prob.matrix <- ifelse(is.na(pred$p.differences), 1, pred$p.differences)
treatments <- colnames(prob.matrix)
means <- pred$predictions$predicted.value
alpha <- 0.05
lsd_group(
treatments,
means,
alpha,
prob.matrix
)
#> treatment group
#> 1 Marvellous a
#> 2 Golden_rain a
#> 3 Victory a