
A prediction function for models with more than one variable to predict on
report_tables.RdThis function outputs the predictions for each factor for a single model. Each factor is put on a separate Excel sheet.
Value
list of data.frame
A list of data frames. The first data frame is the ANOVA for the model.
The remaining data frames are the prediction tables from the classify
object.
Examples
library(asreml)
model <- asreml(
fixed = yield ~ Variety + Nitrogen + Variety:Nitrogen,
random = ~idv(Blocks) + idv(Blocks):idv(Wplots),
residual = ~idv(units),
data = oats
)
report_tables(
model,
classify = "Variety:Nitrogen"
)
#> $Anova
#> Effect yield
#> 1 Variety 0.226
#> 2 Nitrogen 0.000
#> 3 Variety:Nitrogen 0.936
#>
#> $Variety
#> treatment group lsd means
#> 1 Marvellous a 15.77278 109.7917
#> 2 Golden_rain a 15.77278 104.5000
#> 3 Victory a 15.77278 97.6250
#>
#> $Nitrogen
#> treatment group lsd means
#> 1 0.6_cwt a 8.93407 123.38889
#> 2 0.4_cwt b 8.93407 114.22222
#> 3 0.2_cwt c 8.93407 98.88889
#> 4 0_cwt d 8.93407 79.38889
#>
#> $`Variety:Nitrogen`
#> treatment group lsd means
#> 1 Marvellous,0.6_cwt a 18.54066 126.83333
#> 2 Golden_rain,0.6_cwt ab 18.54066 124.83333
#> 3 Victory,0.6_cwt ab 18.54066 118.50000
#> 4 Marvellous,0.4_cwt abc 18.54066 117.16667
#> 5 Golden_rain,0.4_cwt abc 18.54066 114.66667
#> 6 Victory,0.4_cwt abc 18.54066 110.83333
#> 7 Marvellous,0.2_cwt bcd 18.54066 108.50000
#> 8 Golden_rain,0.2_cwt cde 18.54066 98.50000
#> 9 Victory,0.2_cwt def 18.54066 89.66667
#> 10 Marvellous,0_cwt efg 18.54066 86.66667
#> 11 Golden_rain,0_cwt fg 18.54066 80.00000
#> 12 Victory,0_cwt g 18.54066 71.50000
#>
if (FALSE) { # \dontrun{
# Using it to write with writexl
tables <- excel_prediction_file(
model,
classify = "Variety:Nitrogen",
)
writexl::write_xlsx(x = tables, path = "Prediction_Tables.xlsx")
} # }